CMML: a New Metric Learning Approach for Cross Modal Matching

نویسندگان

  • Alexis Mignon
  • Frédéric Jurie
چکیده

This paper proposes a new approach for Cross Modal Matching, i.e. the matching of patterns represented in different modalities, when pairs of same/different data are available for training (e.g. faces of same/different persons). In this situation, standard approaches such as Partial Least Squares (PLS) or Canonical Correlation Analysis (CCA), map the data into a common latent space that maximizes the covariance, using the information brought by positive pairs only. Our contribution is a new metric learning algorithm, which alleviates this limitation by considering both positive and negative constraints and use them efficiently to learn a discriminative latent space. The contribution is validated on several datasets for which the proposed approach consistently outperforms PLS/CCA as well as more recent discriminative approaches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large Scale Metric Learning for Matching of Heterogeneous Multimedia Data

Heterogeneous multimedia data are widely encountered in many applications, such as photo-sketch face recognition, still image to video face recognition, cross-modality image synthesis, cross media retrieval, etc. With the ubiquitous use of digital imaging devices, mobile terminals and social networks, there are lots of heterogeneous and homogeneous data from multiple sources, e.g., news media w...

متن کامل

An Effective Approach for Robust Metric Learning in the Presence of Label Noise

Many algorithms in machine learning, pattern recognition, and data mining are based on a similarity/distance measure. For example, the kNN classifier and clustering algorithms such as k-means require a similarity/distance function. Also, in Content-Based Information Retrieval (CBIR) systems, we need to rank the retrieved objects based on the similarity to the query. As generic measures such as ...

متن کامل

Composite Kernel Optimization in Semi-Supervised Metric

Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...

متن کامل

Cross-Modal Face Matching: Beyond Viewed Sketches

Matching face images across different modalities is a challenging open problem for various reasons, notably feature heterogeneity, and particularly in the case of sketch recognition – abstraction, exaggeration and distortion. Existing studies have attempted to address this task by engineering invariant features, or learning a common subspace between the modalities. In this paper, we take a diff...

متن کامل

Deep Matching Autoencoders

Increasingly many real world tasks involve data in multiple modalities or views. This has motivated the development of many effective algorithms for learning a common latent space to relate multiple domains. However, most existing cross-view learning algorithms assume access to paired data for training. Their applicability is thus limited as the paired data assumption is often violated in pract...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013